Micro-Macro Schemes for Kinetic Equations Including Boundary Layers
نویسندگان
چکیده
We introduce a new micro-macro decomposition of collisional kinetic equations in the specific case of the diffusion limit, which naturally incorporates the incoming boundary conditions. The idea is to write the distribution function f in all its domain as the sum of an equilibrium adapted to the boundary (which is not the usual equilibrium associated with f) and a remaining kinetic part. This equilibrium is defined such that its incoming velocity moments coincide with the incoming velocity moments of the distribution function. A consequence of this strategy is that no artificial boundary condition is needed in the micromacro models and the exact boundary condition on f is naturally transposed to the macro part of the model. This method provides an ’Asymptotic preserving’ numerical scheme which generates a very good approximation of the space boundary values at the diffusive limit, without any mesh refinement in the boundary layers. Our numerical results are in very good agreement with the exact so-called Chandrasekhar value, which is explicitely known in some simple cases.
منابع مشابه
A boundary matching micro/macro decomposition for kinetic equations
We introduce a new micro/macro decomposition of collisional kinetic equations which naturally incorporates the exact space boundary conditions. The idea is to write the distribution fonction f in all its domain as the sum of a Maxwellian adapted to the boundary (which is not the usual Maxwellian associated with f) and a reminder kinetic part. This Maxwellian is defined such that its ’incoming’ ...
متن کاملINVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.
متن کاملA New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit
We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and non-equilibrium parts. We also use a projection technique that allows to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the non-equilibrium part. By using a suita...
متن کاملLinear Kinetic Heat Transfer: Moment Equations, Boundary Conditions, and Knudsen layers
A linear kinetic equation for heat transfer is solved by means of the method of moments. The moment equations are solved with Maxwelltype boundary conditions for steady state energy transport. The results exhibit marked Knudsen boundary layers. The accuracy of the description is examined, and it is shown that already a relatively small number of moments can give satisfactory resolution of Knuds...
متن کاملAnalytical Approach for Vibration Analysis of a Microsensor with Two layers of Silicon and Piezoelectric based on MCST
The vibration analysis is an important step in the design and optimization of microsensors. In most of the cases, COMSOL software is employed to consider the size-dependency on the dynamic behavior in the MEMS sensors. In this paper, the Modified Couple Stress Theory (MCST) is used to capture the size effect on dynamic behavior in a microsensor with two layers of the silicon and piezoelectric. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012